Auxotrophic mutants of Rhizobium meliloti 104A14 were isolated using nitrous acid mutagenesis followed by penicillin enrichment. Mutants in ornithine transcarbamylase, argininosuccinate synthetase or serine-glycine biosynthesis formed nitrogen-fixing (Fix+) nodules on the roots of alfalfa
نویسنده
چکیده
Auxotrophic mutants of Rhizobium meliloti 104A14 were isolated using nitrous acid mutagenesis followed by penicillin enrichment. Mutants in ornithine transcarbamylase, argininosuccinate synthetase or serine-glycine biosynthesis formed nitrogen-fixing (Fix+) nodules on the roots of alfalfa (Medicago sativa). Mutants with defects in ornithine, pyrimidine, purine, asparagine, leucine, methionine or tyrosine biosynthesis, in one-carbon metabolism or in carbamoylphosphate synthetase formed nodules but these nodules were unable to fix nitrogen. Prototrophic revertants were always Fix+. Plasmids that would complement many of these auxotrophs were isolated by transduction with a P2 cosmid gene bank of R. meliloti 104A14. These plasmids were then introduced into mutants of the same and different classes and the growth and symbiotic phenotypes of the new strains were determined. In all cases, complementation of the nutritional defect restored symbiotic nitrogen fixation.
منابع مشابه
Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing...
متن کاملIsolation and symbiotic characterization of transposon Tn5-induced arginine auxotrophs of Sinorhizobium meliloti.
Seventeen arginine auxotrophic mutants of Sinorhizobium meliloti Rmd201 were isolated by random transposon Tn5 mutagenesis using Tn5 delivery vector pGS9. Based on intermediate feeding studies, these mutants were designated as argA/argB/argC/argD/argE (ornithine auxotrophs), argF/argI, argG and argH mutants. The ornithine auxotrophs induced ineffective nodules whereas all other arginine auxotro...
متن کاملMolecular characterization of Tn5-induced symbiotic (Fix-) mutants of Rhizobium meliloti.
To investigate the expression of specific symbiotic genes during the development of nitrogen-fixing root nodules, we conducted a systematic analysis of nodule-specific proteins and RNAs produced after the inoculation of alfalfa roots with a series of Rhizobium meliloti mutants generated by site-directed transposon Tn5 mutagenesis. The mutagenized region of the Rhizobium genome covered approxima...
متن کاملMorphogenetic Rescue of Rhizobium meliloti Nodulation Mutants by trans-Zeatin Secretion.
The development of nitrogen-fixing nodules is induced on the roots of legume host plants by Rhizobium bacteria. We employed a novel strategy to probe the underlying mechanism of nodule morphogenesis in alfalfa roots using pTZS, a broad host range plasmid carrying a constitutive trans-zeatin secretion (tzs) gene from Agrobacterium tumefaciens T37. This plasmid suppressed the Nod- phenotype of Rh...
متن کاملEarly nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors.
Rhizobium nod genes are essential for root hair deformation and cortical cell division, early stages in the development of nitrogen-fixing root nodules. Nod(-) mutants are unable to initiate nodules on legume roots. We observed that N-(1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid, compounds known to function as auxin transport inhibitors, induced nodule-like structures on alfalfa ro...
متن کامل